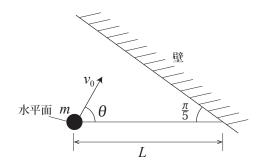
【No. 67】 図のように、水平面に対して角度 $\frac{\pi}{5}$ で傾斜した壁に向かい、壁から水平距離 L の位置から仰角 θ ,

速さ v_0 で質量mの小球を投げる。 v_0 を一定にして、図の断面内において θ を変えて投げ、最も短い時間で小球が壁に衝突する条件を探す。最も短い時間で小球が壁に当たったときの θ の値として最も妥当なのはどれか。

ただし、 ν_0 は小球が壁に届くのに十分な大きさである。また、重力加速度の大きさをgとする。



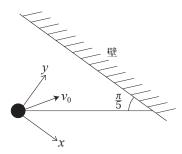
- 1. $\frac{\pi}{5}$
- $2. \frac{\pi}{4}$
- 3. $\frac{3\pi}{10}$
- 4. $\frac{7\pi}{20}$
- 5. $\frac{2\pi}{5}$

 $\frac{\pi}{5}$ という数にちょっと驚きますが、壁に投げたければ、壁の方向に投げればよい、という当たり前の結

論になります。試験的には、引っかけを疑って式で確かめるでしょうが、その場合「斜めの問題」は斜めの 座標系で考えるとというセオリーに従います。

解答

投げた点を原点として、壁に平行な方向をx軸、垂直な方向をy軸とする座標系をたてる(次図)。



このとき、小球の初速度のy方向成分を u_0 、重力のy方向成分を-gyとすると、等加速度運動の公式より、

$$y = -\frac{g_y}{2}t^2 + u_0t$$

 u_0 は壁に衝突するのに十分な大きさであるので、 u_0 が大きいほど u_0t は大きく、したがって、y も大きくなる。つまり、最小の時間で壁に到達するためには u_0 を大きくすべきである。 u_0 の最大値は v_0 であるのでこのときが最小の時間となるが、これは壁に垂直に投げるということである。

このとき.

$$\theta = \frac{\pi}{2} - \frac{\pi}{5} = \frac{3\pi}{10}$$